Large-Scale Production of Wholly Cellular Bioinks via the Optimization of Human Induced Pluripotent Stem Cell Aggregate Culture in Automated Bioreactors

# Y-27632 dihydrochloride (BioGems 21293823) #SB431542 (Biogems 3014193) #LDN193189 (Biogems 1066208) #CHIR99021 (BioGems 2520691) #iWR1 (BioGems 1128234)

Adv Healthc Mater. 2022 Oct 31;e2201138

Debbie L L Ho 1Stacey Lee 1Jianyi Du 1Jonathan D Weiss 1Tony Tam 1Soham Sinha 1Danielle Klinger 1Sean Devine 2Art Hamfeldt 2Hope T Leng 1Jessica E Herrmann 1 3Mengdi He 4Lee G Fradkin 1Tze Kai Tan 5 6 7David Standish 2Peter Tomasello 2Donald Traul 2Noushin Dianat 8Rukmini Ladi 2Quentin Vicard 8Kishore Katikireddy 2Mark A Skylar-Scott 1 9 10

Abstract

Combining the sustainable culture of billions of human cells and the bioprinting of wholly cellular bioinks offers a pathway toward organ-scale tissue engineering. Traditional 2D culture methods are not inherently scalable due to cost, space, and handling constraints. Here, the suspension culture of human induced pluripotent stem cell-derived aggregates (hAs) is optimized using an automated 250 mL stirred tank bioreactor system. Cell yield, aggregate morphology, and pluripotency marker expression are maintained over three serial passages in two distinct cell lines. Furthermore, it is demonstrated that the same optimized parameters can be scaled to an automated 1 L stirred tank bioreactor system. This 4-day culture results in a 16.6- to 20.4-fold expansion of cells, generating approximately 4 billion cells per vessel, while maintaining >94% expression of pluripotency markers. The pluripotent aggregates can be subsequently differentiated into derivatives of the three germ layers, including cardiac aggregates, and vascular, cortical and intestinal organoids. Finally, the aggregates are compacted into a wholly cellular bioink for rheological characterization and 3D bioprinting. The printed hAs are subsequently differentiated into neuronal and vascular tissue. This work demonstrates an optimized suspension culture-to-3D bioprinting pipeline that enables a sustainable approach to billion cell-scale organ engineering.

Keywords: 3D bioprinting; cell manufacturing; organoids; pluripotent stem cells; suspension culture.

댓글 달기

Shopping Cart
Scroll to Top